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Abstract

Mass transfer from a soluble plate to an impinging liquid jet con®ned by a conical wall is investigated. The nozzle-to-

plate distance is very short, less than one nozzle diameter, the ¯ow regime is laminar, Re < 1600, and the Schmidt

number ranges from 960 to 50 000. Navier±Stokes and solute transport equations are solved by a ®nite di�erence

scheme. Numerical predictions of the average mass transfer coe�cient are compared with data obtained by measuring

the dissolution rate of benzoic acid in water and in aqueous solutions of glycerol. A correlation is presented between

stagnation Sherwood number, jet Reynolds number and Schmidt number, Shst=Sc1=3 � 1:771=2.

The e�ects on the mass transfer coe�cients of the velocity pro®le at the nozzle exit and of an insoluble starting

length are analyzed. The onset of laminar-to-turbulent transition is identi®ed using mass transfer data. The mass

transfer coe�cients in the conical cell are compared with those in a radial cell con®ned by parallel plates. Ó 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

Impinging jets are frequently used when high heat

and mass transfer rates are required. In industry, they

are applied in diverse processes such as in paper and

textile drying processes, steel mills, tempering of glass,

cooling of turbine blades and electronic components.

The present paper is about mass transfer from a

soluble plate placed perpendicular to a laminar im-

pinging jet. The jet ¯ow is con®ned by a conical wall

extending from the nozzle to a short distance above the

impingement plate (0.1±0.3 nozzle diameters). The cell is

illustrated in Fig. 1, where streamlines representing

laminar ¯ow predictions are also shown [1].

The last purpose of the present investigation is to

study the applicability of the conical cell to carry out

membrane separation processes. In membrane separa-

tion studies, mass transfer data for impermeable systems

are usually applied to characterize mass transfer rates in

the layer adjacent to the porous membrane surface. The

present study can be seen as one more step in reaching

the ®nal objective; the previous was the study of laminar

¯ow in the conical cell [1].

In the conical cell, the ¯ow ®eld created by an im-

pinging jet is complex, varying from a stagnation type of

¯ow to a wall-jet type of ¯ow. The con®nement pro-

motes the development of two recirculation zones, one

along the conical wall and another over the impinge-

ment plate close to the exit of the cell. Besides this

complex ¯ow, the Schmidt numbers of interest are those

greater than 960, and so the concentration boundary

layer is at least one order of magnitude thinner than the

hydrodynamic wall-jet boundary layer. Consequently, a

much smaller grid spacing is needed to solve the solute

transport equation than to solve the ¯ow equations.

These reasons justify the development of a robust nu-

merical procedure, which will be described in detail.

There are few articles published about mass transfer

promoted by laminar impinging jets at high Schmidt

numbers. Scholz and Trass [2] reported mass transfer

data from a ¯at plate impinged by a free water jet. They
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determined the local mass transfer coe�cients by mea-

suring the decrease in thickness of coatings of acetanilide

and benzoic acid and compared the data with the pre-

dictions obtained by solving the laminar boundary layer

equation along the plate; they observed boundary layer

separation and the formation of a toroidal vortex at low

jet Reynolds numbers. Chen and Modi [3] numerically

studied the mass transfer characteristics of a slot jet

impinging normally on a ¯at wall. This study is for high

Schmidt numbers but for turbulent ¯ows. Alkire and Ju

[4] also studied the mass transfer characteristics of a slot

jet impinging normally on a ¯at wall, employing an

electrochemical technique. They obtained local mass

transfer coe�cients and developed correlations for three

regions along the surface: impingement, transition and

wall jet.

There are several studies on heat transfer promoted

by laminar impinging jets, but the results can not be

extrapolated because, for liquids, the Prandtl number is

substantially lower than the Schmidt number. Saad et al.

[5] solved the Navier±Stokes and energy equations to

predict the ¯ow and the local heat transfer coe�cients of

a laminar impinging jet con®ned by an upper plane wall.

Nomenclature

A surface area of the soluble plate

c normalized solute concentration (C=C�)
C solute concentration

C� solute solubility

C1
i solute concentration at the outlet of tank i in

the inlet pipe of the cell

C1
iÿ1 solute concentration at the inlet of tank i in

the inlet pipe of the cell

C2
j solute concentration at the outlet of tank j in

the outlet pipe of the cell

C2
jÿ1 solute concentration at the inlet of tank j in

the outlet pipe of the cell

C1
0 solute concentration in the reservoir and at the

reservoir outlet

C2
0 solute concentration at the cell outlet

C2
M solute concentration at the reservoir inlet

C1
N solute concentration at the cell inlet

CN bulk solute concentration inside the cell

D solute molecular di�usivity

Dj nozzle (pipe) diameter

Dp impingement plate diameter

hs normalized height of the sub-domain �Hs=Dj�
H nozzle-to-plate distance

Hs height of the sub-domain

kr local mass transfer coe�cient
�kr average mass transfer coe�cient along r
�k average mass transfer coe�cient at the cell exit

L height of the exit area

_m mass transfer rate in the cell

M number of tanks in the outlet pipe of the cell

n exponent in Eq. (23)

N number of tanks in the inlet pipe of the cell

Q liquid ¯ow rate

r normalized radial coordinate �R=Dj�

r0 normalized radial position where the mass

boundary layer starts

R radial coordinate

Rs sum of the total normalized residues of the

discretized solute transport equation and

boundary conditions or of the ¯ow equations

and boundary conditions

t time

vr normalized radial velocity �Vr=Vj�
vz normalized axial velocity �Vz=Vj�
Vj average jet velocity at the nozzle exit

Vt total volume (reservoir, cell and connecting

pipes)

V0 volume of the reservoir

V 1 volume of each tank in the inlet pipe of the

cell

V 2 volume of each tank in the outlet pipe of the

cell

z normalized axial coordinate �Z=Dj�
Z axial coordinate

Non-dimensional numbers

Pe Peclet number �� DjVj=D�
Re Reynolds number based on the jet diameter at

the nozzle �� qDjVj=l�
Sc Schmidt number �� l=qD�
Sh average Sherwood number at the cell outlet

�� �kDj=D�
Shr local Sherwood number �� krDj=D�
Shr average Sherwood number at r �� �krDj=D�
Shst stagnation Sherwood number �� kr�0Dj=D�
Greek symbols

q liquid density

x dimensionless vorticity

w dimensionless stream function

l liquid dynamic viscosity

Fig. 1. Cell and laminar ¯ow pattern at Re � 860.
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They compared their predictions with published data

and found a favorable agreement. Elison and Webb [6]

studied free-surface and submerged liquid jets impinging

perpendicular to a constant heat ¯ux surface for a large

range of jet Reynolds numbers. They determined local

Nusselt numbers and presented a relationship between

stagnation Nusselt number and jet Reynolds number for

laminar regimes (Nust / Re0:8). Polat et al. [7] published

a review article on ¯ow and heat transfer under im-

pinging jets and Jambunathan et al. [8], another one on

heat transfer for single circular impinging jets.

1.1. Previous work ± laminar ¯ow predictions

Streamlines representing laminar ¯ow predictions are

shown in Fig. 1. Miranda and Campos [1] studied the

laminar ¯ow in a conical cell and analyzed the e�ects on

the ¯ow pattern of jet Reynolds number, shape of the

velocity pro®le at the nozzle exit and nozzle-to-plate

distance. The main conclusions are:

1. The ¯ow inside the cell must be analyzed in three re-

gions: impingement region, wall region and expan-

sion region. At the impingement region, the

impinging plate imposes a shift on the ¯uid direction,

which occurs very close to the surface. At the wall re-

gion, the ¯uid ¯ows in a thin channel con®ned below

by the plate and above by ¯uid in recirculation. At

the expansion region, the ¯uid expands to the whole

area of the cell. After the expansion the ¯uid ¯ows

con®ned by the conical wall and the impingement

plate.

2. The jet Reynolds number and the velocity pro®le at

the nozzle exit a�ect the ¯ow in the entire cell. For

low jet Reynolds numbers, the ¯ow direction shifts

far from the plate, the upper recirculation zone is ra-

dially short and the ¯uid expands near the axis of the

cell. For high jet Reynolds numbers, the ¯ow direc-

tion shifts very close to the plate, the upper recircula-

tion zone is radially long, the ¯uid expands near the

exit of the cell and a second recirculation zone ap-

pears in the expansion region, close to the plate. If

the velocity pro®le at the nozzle exit is uniform, in-

stead of being parabolic, the ¯ow direction shifts fur-

ther from the plate, the ¯uid ¯ows in a thick channel

along the wall region and the second recirculation

zone does not develop. The nozzle-to-plate distance

only a�ects the ¯ow at the expansion region. When

this distance increases, the second recirculation zone

enlarges and develops very close to the exit of the cell.

3. The laminar-to-turbulent transition occurs at a criti-

cal jet Reynolds number near 1600.

4. The e�ect of the conical con®nement is felt on the ra-

dial extension of both recirculation zones; for the

same jet Reynolds number and the same nozzle-to-

plate distance, the recirculation zones are longer

when the con®nement is done by parallel plates.

The conical wall has a stabilizing e�ect on the ¯ow,

preventing burst of the recirculation zones through

the exit of the cell.

The experimental technique is presented in the next

section, followed by a description of the numerical work.

Afterwards, experimental and numerical data are com-

pared and the results are discussed.

2. Experimental work

2.1. Experimental setup

The experimental setup is shown in Fig. 2. Liquid

¯owing in a closed circuit was pumped from the reser-

voir (3) to the cell (1) and returned to the reservoir. The

pipe connecting the pump (2) to the cell was long enough

to guarantee a well-established laminar ¯ow at the cell

inlet. The pump had incorporated an electric heater (12)

and a thermocouple (11) and acted as a temperature

controller. The liquid in the reservoir was agitated by an

impeller (9) driven by an electric motor.

The solute concentration in the reservoir was con-

tinuously measured; a small amount of liquid was con-

tinuously taken from the reservoir by a high speed

peristaltic pump (4), and was analyzed in a spectro-

photometer (5) placed in the line. The spectrophotom-

eter was connected to a computer (6) by an RS 232

connecting cable (10) for data acquisition.

The liquid was distilled water or aqueous solutions of

glycerol and the solute was benzoic acid. The liquid ¯ow

rate was controlled by a metering valve (7) placed in the

feed line and was measured by a calibrated rotameter

(8).

Spectrophotometric calibration curves were per-

formed for each liquid tested. Linear relationships were

Fig. 2. Experimental setup. Legend: 1 ± cell, 2 ± pump, 3 ±

reservoir, 4 ± peristaltic pump, 5 ± spectrophotometer, 6 ±

computer, 7 ± metering valve, 8 ± rotameter, 9 ± impeller, 10 ±

RS 232 connecting cable, 11 ± thermocouple and 12 ± electric

heater.
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obtained in a concentration range with an upper limit

around 0.5% of benzoic acid solubility.

2.2. Experimental test cell

A front view of the cell, made of brass, is shown in

Fig. 3. There is an important constructive detail that

must be described: when both parts of the test section (A

and B) were set together and the screws were tightened,

the o-ring signalized in Fig. 3 was compressed until the

stoppers stroked against each other. When they stroked,

the distance L shown in Fig. 1 was exactly 1.1 mm. This

distance was con®rmed by covering all the inner surface

of part B with a layer of moldable plastic material. Parts

A and B were set together; later they were separated and

the measured height of the plastic material was 1.1 mm.

At the bottom of the cell, an opening was drilled to

make mould removal easier.

The diameter of the inlet pipe was Dj � 11:7 mm, that

of the impingement plate Dp � 77:1 mm and the distance

from the nozzle to the plate was H � 7:7 mm.

2.3. Mould and soluble plate manufacture

The moulds were made of stainless steel of 90 mm

external diameter and 20 mm height. The inner diameter

was the pretended for the soluble plate; 10 moulds were

assembled with di�erent inner diameters, from 10 to 77.1

mm. A circular section could be adapted to the central

part of the mould to manufacture a circular crown of

soluble material.

The soluble plate was manufactured by heating the

benzoic acid to its melting point. The mould was placed

upside down, over a ¯at metal sheet, and the liquid acid

poured through an opening in the base of the mould.

The weight of the mould was such that a good seal be-

tween the mould and the metal sheet was obtained. The

acid was cooled to ambient temperature, and the metal

sheet was withdrawn without any damage to the surface

of the soluble plate.

2.4. Experimental data treatment

A schematic representation of the closed circuit of the

liquid is shown in Fig. 4. The liquid in the reservoir was

mixed well. The inlet and outlet solute concentrations,

C2
M and C1

0 , respectively, are related by the following

mass balance

C2
M � C1

0 �
V0

Q
dC1

0

dt
; �1�

where V0 is the reservoir volume, and Q is the liquid

volumetric ¯ow rate.

The ¯ow along the connecting pipes promotes high

solute axial dispersion, particularly when the regime is

laminar and the pipes are long ± conditions observed in

the test-section. The solute dispersion in the connecting

pipes was accounted for by the so-called tanks-in-series

model [9]. Mass balances to well-mixed tanks of volume

V 1, representing the ¯ow in the inlet pipe of the cell, are

given by

C1
iÿ1 � C1

i �
V 1

Q
dC1

i

dt
; i � 1; . . . ;N ; �2�

where the concentration notation is shown in Fig. 4 and

N ranges from 1 (well-mixed ¯ow) to 1 (plug ¯ow).

Mass balances to well-mixed tanks of volume V 2,

representing the ¯ow in the outlet pipe of the cell, are

given by

C2
jÿ1 � C2

j �
V 2

Q

dC2
j

dt
; j � 1; . . . ;M ; �3�

where the concentration notation is also shown in Fig. 4

and M ranges from 1 (well-mixed ¯ow) to1 (plug ¯ow).

Fig. 3. Front view of the test cell.

Fig. 4. Schematic representation of the closed circuit of the

liquid.
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The solute concentrations at the cell inlet and outlet

and the mass transfer rate from the soluble plate to the

¯owing liquid, _m are related by the following mass bal-

ance

QC2
0 � QC1

N � _m: �4�
The increasing rate of solute concentration in the res-

ervoir and the mass transfer rate from the soluble plate

can be combined through the previous mass balances,

Eqs. (1)±(4). By applying Laplace transforms, admitting

zero solute concentration in all the circuit at t� 0 and

considering the theorem of the ®nal value, a relationship

between dC1
0=dt and _m is established

lim
t!1

dC1
0

dt
� _m

Vt

! Vt

dC1
0

dt
� _m; �5�

where Vt is the liquid volume inside the closed circuit:

reservoir, connecting pipes and cell.

Following the de®nition of mass transfer coe�cient,

the transfer rate _m and the solute concentration driving

force are related by

_m � �kA�C� ÿ CN�; �6�
where C� is the equilibrium concentration observed at

the plate surface (solubility), A the surface area of the

soluble plate, �k the average mass transfer coe�cient and

CN is the bulk solute concentration.

The maximum concentration allowed in the reservoir

was 0.5% of the solute solubility (upper limit of the

calibration curve). Therefore, the concentration driving

force in the cell, C� ÿ CN � C�, and, according to Eq.

(6), the mass transfer rate, _m, were approximately con-

stant along each test-run.

According to Eq. (5), if _m is constant the increasing

rate of C1
0 must also be so. In Fig. 5 are presented

concentration records for three di�erent volumes of

liquid in the circuit (Re � 1050 and Sc � 960). Analyzing

record B, an initial abrupt increase of C1
0 corresponding

to the non-stationary start of the test and, as expected, a

linear increase from a given instant onwards are ob-

served. The slope of the straight line is dC1
0=dt � _m=Vt

and the average mass transfer coe�cient is given by Eq.

(6).

Concentration records A and C are to illustrate the

preliminary tests done to determine the suitable total

volume of liquid in the closed circuit. When this volume

is too small (record A), the limit concentration is

reached in a very short time, sometimes before the start

of the steady state. When this volume is too high (record

C), the slope of the straight line, obtained by applying a

linear regression to experimental data, is very low and

the experimental errors can induce an appreciable un-

certainty in the slope value.

Most of the time, several tests were done in a se-

quential way, with the same solube plate and in the same

experimental conditions, until the maximum concen-

tration (0.5% of the solute solubility) in the reservoir was

reached. The results of these tests were reproducible with

a maximum deviation of the order of the experimental

uncertainty. This behavior was important to show that,

during each test, the surface shape did not change suf-

®ciently to modify the mass transfer coe�cients. The

surface of the soluble plate was examined after each

series of tests. Sometimes its thickness was measured

along the surface, and any signi®cant change in surface

shape was detected.

2.5. Experimental mass transfer coe�cients

Three distinct mass transfer studies were done with

the experimental method earlier described:

1. The average mass transfer coe�cient in the cell, �k,

was obtained by performing tests with soluble plates

of 77.1 mm diameter. For the cell geometry, the ob-

jective was to ®nd a relationship between the follow-

ing non-dimensional numbers: Sh; Re and Sc.

2. The average mass transfer coe�cient along the radius

of the cell, �kr, was obtained by performing tests with

soluble plates of di�erent diameters from 10 to 77.1

mm. The objective was to study the evolution of Shr

along r for a given Sc (water±benzoic acid system)

and di�erent Re.

3. The e�ects of an insoluble starting length on the

average mass transfer coe�cients were also investi-

gated. This was done by comparing the values of

average mass transfer coe�cients obtained with

soluble circular crowns of di�erent inner diameters.

The Schmidt number values ranged from 960 to 50 000,

depending on the glycerol concentration in the aqueous

solution, and the jet Reynolds number values from 100

to 1600, with the upper limit imposed by the laminar±

turbulent transition. The density and dynamic viscosity

of the ¯uids were measured, while the solubility and

molecular di�usivity of benzoic acid in water and in

aqueous solutions of glycerol were obtained from liter-

Fig. 5. The evolution of the solute concentration in the reser-

voir for three total volumes of liquid in the circuit at Re � 1050

and Sc � 960: A ± Vt � 1 l, B ± Vt � 11.5 l, C ± Vt� 60 l.
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ature. The molecular di�usivity of benzoic acid in

aqueous solutions of glycerol was obtained from [10],

the molecular di�usivity of benzoic acid in water from

[11] and the solubility of benzoic acid from [12].

The experimental uncertainty was estimated em-

ploying established techniques. The uncertainty in the

values of the slopes (calibration curve and dC1
0=dt) was

determined following the methodologies presented in

[13] and [14].

For a given Schmidt number, the relative uncertainty

in the values of Shr and Sh changes from point to point,

along r (Fig. 12(b)) and Re (Fig. 13), respectively. This

behavior has much to do with the liquid volume in the

circuit (di�erent from experiment to experiment) and

with the number of data taken to do the linear regres-

sions. The relative uncertainty in the values of Sh in-

creases with Schmidt number (Fig. 13), probably due to

¯uctuations in the operation temperature and due to

lesser solute mixing degree in the reservoir. The maxi-

mum relative uncertainty was about 5% for experiments

with water and about 7% for experiments with highly

viscous glycerol solutions.

3. Numerical study

3.1. Flow equations

The ¯ow equations are written below in the stream

function±vorticity formulation. The coordinates are

normalized by the nozzle diameter, Dj, the velocity

components are normalized by the average jet velocity at

the nozzle exit, Vj , and Re represents the jet Reynolds

number.

xr � o2w
oz2
ÿ 1

r
ow
or
� o2w

or2
; �7�

vr

ox
or
� vz

ox
oz
ÿ x

vr

r
� 1

Re
o2x
or2

�
ÿ x

r2
� 1

r
ox
or
� o2x

oz2

�
:

�8�
Eq. (7) is a Poisson-type equation and Eq. (8) is the so-

called vorticity transport equation. The dimensionless

vorticity x and stream function w are de®ned as:

x � ovr

oz
ÿ ovz

or
; �9�

vz � ÿ 1

r
ow
or

; vr � 1

r
ow
oz
: �10�

3.2. Solute transport equation

The solute transport equation is written below in

polar coordinates. The solute concentration is normal-

ized by the solute equilibrium concentration C�, and Pe

represents the Peclet number, Pe � ReSc � VjDj=D.

vr

oc
or
� vz

oc
oz
� 1

Pe
o2c
or2

�
� o2c

oz2
� 1

r
oc
or

�
: �11�

Eqs. (7)±(11) are written assuming laminar and incom-

pressible ¯ow, constant ¯uid properties and no buoy-

ancy e�ects.

3.3. Numerical procedure

The mass boundary layer in a liquid-soluble solid

contact is very thin and a very re®ned grid must be

employed near the plate to obtain accurate concentra-

tion pro®les. The solution of the ¯ow and solute trans-

port equations in the numerical domain of the cell,

employing the grid used by Miranda and Campos [1] but

re®ned near the soluble plate, was a time consuming

task. A numerical strategy was outlined, based on the

fact that the solute concentration is di�erent from zero

only in a very thin layer near the plate. This numerical

strategy involves three steps:

Step I. The solution of the ¯ow equations in the nu-

merical domain of the cell using the grid and the

numerical procedure described in [1].

Step II. The solution of the ¯ow equations in a sub-

domain near the plate, using a re®ned and orthog-

onal grid.

Step III. The solution of the solute transport equa-

tion in this sub-domain.

Miranda and Campos [1] solved the ¯ow equations and

respective boundary conditions in the numerical domain

of the cell by applying a ®nite di�erence technique. The

numerical domain was not rectangular and a non-or-

thogonal boundary-®tted grid was used. An algebraic

transformation was applied to solve the ¯ow equations

in the grid coordinates. The equations were discretized

by second-order accurate schemes, and the solution ac-

curacy was studied from solutions on successively re-

®ned grids. The rms error de®ned by Fletcher [15] was

always less than 0.02 for the grid employed to predict the

¯ow inside the cell. The e�ect on the ¯ow of a developing

laminar pro®le at the cell inlet was studied. Therefore,

solutions of the ¯ow equations for di�erent inlet velocity

pro®les were obtained, from uniform to parabolic. For

more details see [1].

3.4. Sub-domain and grid

The sub-domain is represented in Fig. 6, and the

normalized height of the sub-domain, hs � Hs=Dj, is

equal to or less than L=Dj. The grid is shown in Fig. 7

and is orthogonal and non-uniform: (1) the vertical lines

are those used to obtain the ¯ow solution in the cell

(Step I); (2) the distribution of the horizontal lines is
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denser near the plate where concentration gradients are

high.

3.5. Boundary conditions

The sub-domain and the respective boundaries are

represented in Figs. 6 and 7. The elliptic nature of the

mass transport equation requires the speci®cation of the

boundary conditions at all sides of the numerical sub-

domain.

Boundary I. The vorticity and stream function values

are obtained by applying linear interpolations to the

results of Step I.

As stated earlier, the mass boundary layer is very thin

and so either it must be contained in the sub-domain or

at least a very small variation of the solute concentration

along z must be observed at the boundary, that is

o2c
oz2
� 0: �12�

This boundary condition was tested by solving the ¯ow

and solute transport equations in sub-domains with

di�erent normalized heights, hs � L=Dj and 1=2�L=Dj�.
The predicted concentration pro®les were the same and

boundary condition (12) was taken to be accurate.

Boundary II. There are no momentum and mass

¯uxes through the axis of the cell,

vr � 0;
ovz

or
� 0; w � 0;

x � 0 and
oc
or
� 0; �13�

Boundary III. At the soluble plate, the no-slip condition

is observed

vr � 0; vz � 0; w � 0; x � ovr

oz
�14�

and the solute concentration is the solute solubility,

c � 1.

Boundary IV. The exit is located su�ciently far from

the zone of interest, allowing for the application of a

condition of developed ¯ow parallel to the impingement

plate, which has no upstream in¯uence. Thus,

vz � 0;
ox
or
� ÿx

r
;

ow
or
� 0: �15�

The developed ¯ow and the low molecular di�usivity of

the solute allow for the application of a condition of

developed concentration pro®le, which has no upstream

in¯uence. Thus,
oc
or
� 0: �16�

3.6. Discretization and solution of the ¯ow equations

The ¯ow equations were discretized by applying a

®nite di�erence technique. In the Poisson-type equation,

the derivatives were approximated by a second-order

accurate central di�erence scheme. For each node inside

the sub-domain, an equation of the following form was

obtained

ri; jxi; j � A1wiÿ1; j�A2wi�1; j�A3wi; j�A4wi; jÿ1 �A5wi; j�1;

�17�
where the coe�cients A1±A5 are shown in Appendix A.

The derivatives in the stream-function boundary

conditions were approximated by forward or backward

di�erence, with an accuracy of second order, always in

the inward cell direction. For each node an equation of

the following form was obtained

B1wiÿ2; j � B2wiÿ1; j � B3wi; j � b; �18�

where the coe�cients B1±B3 and b are listed in Appen-

dix A.

The vorticity transport equation was discretized by

applying an upwind scheme: the derivatives of the dif-

fusive terms were approximated by central di�erence

(accuracy of second order) and the derivatives of the

convective terms by forward or backward di�erence

(accuracy of ®rst order). For each node inside the sub-

domain, an equation of the following form was obtained

D1xiÿ1; j � D2xi�1; j � D3xi; j � D4xi; jÿ1 � D5xi; j�1 � 0;

�19�

Fig. 6. Numerical sub-domain.

Fig. 7. Grid and boundaries of the sub-domain.

J.M. Miranda, J.B.L.M. Campos / International Journal of Heat and Mass Transfer 44 (2001) 1269±1284 1275



where the coe�cients D1±D5 are shown in Appendix A.

The vorticity boundary conditions were discretized

by applying an identical scheme to that of the stream-

function boundary conditions. For each node, an

equation of the following form was obtained

E1xiÿ2; j � E2xiÿ1; j � E3xi; j � e; �20�
where the coe�cients E1±E3 and e are listed in Appen-

dix A.

After discretization, two sets of interrelated algebraic

equations were obtained. One set arose from the dis-

cretization of the Poisson equation and stream-function

boundary conditions and the other set from the dis-

cretization of the vorticity transport equation and vor-

ticity boundary conditions. They were solved by an

iterative procedure, and in each step, both sets of

equations were solved by the alternating direction im-

plicit (ADI) method.

The convergence of the iterative procedure was

studied according to the criterion established by [1]; the

iterative process was completed when, during one hun-

dred iterations, the absolute di�erence between consec-

utive values of vr (in all the nodes) was less than 10ÿ5

and the value of Rs (total normalized residues of the ¯ow

equations and boundary conditions) was also less than

10ÿ5.

The accuracy of the numerical method was deter-

mined from solutions on successively re®ned grids; this

re®nement was done by halving the mesh dimensions of

the previous grid. The rms error [15] was computed for

these successively re®ned grids

rms �
Xm

i�1

Xni

j�1

v�i;j
� "
ÿ vi;j

�2

!,
p

#1=2

; �21�

where starred and non-starred values represent quanti-

ties calculated with grids having p� and p number of

nodes, respectively. An identical equation could be

written for vz.

Three tests were performed to study the solution

accuracy. The respective grids used and the values of

rms found are shown in Table 1. The values of vr and vz

taken for reference were those obtained with the ®nest

grid. The schemes used in the discretization of the ¯ow

equations were of ®rst and second order and, therefore,

when the grid spacing is halved, the new value of rms is

expected to be about 2±4 times lower than the previous

one. Table 1 shows that the ratios between consecutive

rms values are of this order of magnitude, and so it is

reasonable to infer that the solution of the algebraic ¯ow

equations converges to the exact solution. The grid

chosen to predict the ¯ow is that in the third line of the

table, and the respective ¯ow solution, at Re � 685, has

rms errors lower than 0.01.

3.7. Discretization and solution of the solute transport

equation

The solute transport equation was also discretized by

applying an upwind scheme; the derivatives of the dif-

fusive terms were approximated by central di�erence

(accuracy of second order) and the derivatives of the

convective terms by forward or backward di�erence

(accuracy of ®rst order). For each node inside the sub-

domain, an equation of the following form was obtained

F1ciÿ1; j � F2ci�1; j � F3ci; j � F4ci; jÿ1 � F5ci; j�1 � 0; �22�
where the coe�cients F1±F5 are shown in Appendix A.

At the boundaries, the derivatives were approximated

by forward or backward di�erence, with an accuracy of

second order, always in the inward cell direction. For

each node in the boundary, an equation of the following

form was obtained

G1ciÿ2; j � G2ciÿ1; j � G3ci; j � G4ci�1; j � G5ci�2; j

� G6ci; jÿ2 � G7ci; jÿ1 � g; �23�
where the coe�cients G1±G7 and g are listed in Appen-

dix A.

After discretization, one set of algebraic equations

was obtained and solved by the ADI method. The

convergence of the iterative process was studied by an-

alyzing the evolution of the solute concentration in a

region where the convergence rate was slow and also by

analyzing the sum of the total normalized residues of the

solute transport equation and boundary conditions (sum

represented by Rs). These procedures are described in [1].

In Fig. 8, the solute concentration evolution along

the iterative process at a point located near the end of

the soluble plate, at Re � 685 and Sc � 960, is rep-

resented. The values of c converge asymptotically to a

constant value, c1. After the 275th iteration the absolute

di�erence jc1 ÿ c275j is less than 10ÿ3 and the absolute

di�erence between consecutive values is less than 10ÿ5.

Similar conclusions were obtained regardless of jet

Reynolds and Schmidt numbers.

In Fig. 8, the value of Rs along the iterative process at

Re � 685 and Sc � 960 is also represented. There is a

decrease in the value of Rs along the process, and after

400 iterations, the value of Rs is three to four orders of

magnitude less than that at the begining of the iterative

Table 1

Results of the accuracy tests at Re � 685 and Sc � 50000

Grid nodes rms

r z vr vz c

A 31 61 0.200 0.022 0.240

B 61 121 0.050 0.006 0.051

C 121 241 0.007 0.0012 0.023

D 241 481 Reference Reference Reference
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process. Once again, similar conclusions were obtained

regardless of jet Reynolds and Schmidt numbers.

The fact that, after 400 iterations, the value of c tends

towards a stabilized value while Rs is still decreasing

con®rms the convergence of the iterative method to

correct values.

A criterion of convergence was established: the iter-

ative process was completed when, during 50 iterations,

the absolute di�erence between consecutive values of c

(in all the nodes) was less than 10ÿ5 and the value of Rs

was also less than 10ÿ5.

The accuracy of the numerical method was also de-

termined from solutions on successively re®ned grids.

For this purpose, the rms error [15] was applied to

normalized solute concentration

rms �
Xm

i�1

Xni

j�1

c�i;j
� "
ÿ ci;j

�2

!,
p

#1=2

: �24�

The grids used and the values of rms found are shown in

Table 1. The values of c taken for reference were those

obtained with the ®nest grid. The schemes used in the

discretization of the solute equation were of ®rst and

second order. Table 1 shows that the ratios between

consecutive rms values are about 2±4, and so it is

reasonable to infer that the solution of the algebraic

solute equation converges to the exact solution. The grid

chosen to predict the solute distribution is that in the

third line of the table, and the respective solution, at

Re � 685 and Sc� 50 000, has an rms error of the order

of 0.023. This value increases with the jet Reynolds

number and at Re � 1685 it is about 0.035.

The local mass transfer coe�cient, kr,was obtained

from the local mass ¯ux

kr � ÿD�dC=dz�z�0

C�
: �25�

As will be shown later, the concentration pro®les are

linear in the layer adjacent to the plate, and so the de-

rivative in Eq. (25) is given by the slope of the straight

line ®tting the concentration values in the plate and in

the node nearest to the plate.

The values of kr, obtained with the grids of Table 1,

are plotted along r in Fig. 9 for Re � 685 and Sc � 960.

The similitude between the values predicted with the two

last grids of the table proves the accuracy of the solu-

tion.

The average mass transfer coe�cient, �k, was obtained

from the integration of the local mass transfer coe�cient

along the surface area of the plate

�k �
R

A kr dA
A

: �26�

The integral in Eq. (26) was solved numerically by ap-

plying the trapezoidal rule, a second-order method.

4. Results

4.1. Flow patterns and mass transfer coe�cients

Miranda and Campos [1] concluded that the ¯ow

inside the cell must be analyzed in three distinct regions:

impingement region, wall region and expansion region.

The mass distribution in the vicinity of the soluble plate

depends on the ¯ow pattern, and so it should also be

analyzed in these regions.

Fig. 10 shows the mass distribution predictions for a

water jet (Sc� 960) ¯owing at di�erent jet Reynolds

numbers. The several colours correspond to di�erent

concentrations according to the legend. The streamlines

close to the plate are also represented.

The mass boundary layer thickness is directly related

to the competition between the e�ective axial ¯ux of

solute, from the plate towards the bulk of the liquid, and

the radial ¯ux of solute, along the plate towards the exit

of the cell. If the radial ¯ux is faster than the axial one,

the mass boundary layer is thin; otherwise, it is thick.

The increase or decrease of the mass boundary layer

thickness depends on how this competition occurs along

a given length.

Fig. 8. Evolution along the iterative procedure: (a) solute con-

centration in a point located near the cell exit; (b) total normal-

ized residues of the solute transport equation and boundary

conditions. Both representations are for Re � 685 and Sc � 960.

Fig. 9. Local mass transfer coe�cients computed with di�erent

grid spacing (Table 1), at Re � 685 and Sc � 960.

J.M. Miranda, J.B.L.M. Campos / International Journal of Heat and Mass Transfer 44 (2001) 1269±1284 1277



Fig. 10. Mass distribution predictions: (a) Re � 100 and Sc � 960; (b) Re � 860 and Sc � 960; (c) Re � 1685 and Sc � 960.
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At the impingement region, the mass boundary layer

is very thin; the thickness is constant near the axis of the

cell and begins to increase with the approaching of the

wall region. In Fig. 11(a), the streamlines entering and

leaving a small control volume placed over the plate and

near the axis (in the limit, this volume represents a point

near the plate) help in understanding the development of

the mass boundary layer in this region. Fresh ¯uid

(without solute) enters through the upper surface of the

control volume and hinders solute di�usion in the pos-

itive axial direction. This fresh ¯uid changes direction

very close to the plate and the radial momentum in-

creases inside the control volume. The solute radial ¯ux

is much faster than the e�ective axial one, and so the

boundary layer is very thin. The axial velocity of the

fresh ¯uid does not change appreciably along the im-

pingement region, and the mass boundary layer thick-

ness remains practically constant.

The axial velocity of the fresh ¯uid decreases next to

the wall region. The axial mass ¯ux acquires importance

relative to the radial one and the thickness of the mass

boundary layer begins to increase.

At the wall region, the ¯uid ¯ows radially in a thin

channel of almost constant height. The axial momentum

di�usion (in the positive direction) induces the exit of

¯uid with solute through the upper surface of a small

control volume taken over the plate (Fig. 11(b)). The

radial convective momentum inside the control volume

decreases either due to the exit of ¯uid through the up-

per surface or due to the increasing cross-sectional area

open to the ¯ow (the height of the channel is almost

constant and the cross-sectional area increases linearly

with r). Along the wall region, the axial convective and

di�usive mass ¯uxes, both in the positive direction, re-

main practically unchanged, while the radial convective

mass ¯ux decreases continuously. Therefore, the

thickness of the mass boundary layer grows along this

region.

At the ¯uid expansion, the axial velocity increases

abruptly, promoting a strong convective transport of

mass in the positive axial direction (Fig. 11(c)). The axial

spread of the mass boundary layer is clearly observed in

Figs. 10(b) and (c).

After the expansion, the ¯uid ¯ows towards the exit

of the cell. The axial velocity component is in the plate

direction, and so ¯uid with solute enters through the

upper surface of a small control volume taken over the

plate (Fig. 11(d)). This convective ¯ow hinders solute

di�usion in the axial direction and promotes an increase

in the radial convective momentum inside the control

volume. The radial mass ¯ux becomes important com-

pared to the e�ective axial ¯ux, and so the thickness of

the mass boundary layer decreases along this region.

The extension of the three ¯ow regions depends on jet

Reynolds number, and, therefore, the development of

the mass boundary layer sustains signi®cant changes

along the laminar regime. The mass distribution near the

soluble plate for Re � 100 is show in Fig. 10(a), and

some insights can be had by comparing Figs. 10(a) and

(b).

1. The mass boundary layer along the whole plate is

thicker for Re � 100 than for Re � 860. The main

reason is that, at the impingement region for

Re � 100, the ¯uid changes direction far from the

plate, making radial convective mass transport near

the plate less intense and less competitive.

2. For Re � 100, the extension of the wall region is

short, the ¯uid expansion occurs not far from the cell

axis and the mass boundary layer su�ers a lesser axial

spread during the expansion.

The mass distribution for Re � 1685, a value close to the

laminar±turbulent transition, is show in Fig. 10(c). The

mass transfer process near the recirculation zone located

in the vicinity of the impingement plate deserves special

attention. The ¯uid in the outer layers of the recircula-

tion zone ¯ows near the soluble plate during part of the

trajectory (part A) and in contact with the ¯uid ¯owing

around the recirculation zone during the other part (part

B). Along part A, the solute concentration in the outer

layers increases due to the proximity of the plate. When

part B begins, the solute concentration in the outer

layers is higher than that in the ¯uid ¯owing around and

also than that in the ¯uid recirculating in the inner

layers. Therefore, from the outer layers, there is solute

transfer in both directions, inwards and outwards. There

is a point in part B where the concentration in the outer

layers equalizes that in the inner layers but is still higher

than that in the ¯uid ¯owing around. From there on and

until part A, the solute transfer is from the inner layers

to the ¯uid ¯owing around the recirculation zone. In the

steady state, the solute received by the outer layers in

part A is lost in part B.

Fig. 11. Flow and the mass distribution inside small control

volumes placed over the plate: (a) impingement region; (b) wall

region; (c) expansion region; (d) after the expansion region.
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Figs. 12(a) and (b) show, respectively, plots of Shr

and Shr along r for water jets ¯owing at di�erent Re; the

solid lines represent numerical predictions and the

symbols in Fig. 12(b) experimental data. A good

agreement between numerical and experimental data can

be observed.

The ¯ow e�ects on the mass boundary layer are also

detected from the predictions of the local mass transfer

coe�cients. At the axis of the cell, Shr has its highest

value, which remains almost constant during a short

distance corresponding to the impingement region

length. Along the wall region, the values of Shr decrease

(the thickness of the mass boundary layer increases), the

slope being more pronounced just after the impingement

region. When the ¯uid expands, there is an abrupt de-

crease and Shr reaches its minimum value. After the

expansion, there is a gradual increase in the Shr values

(the thickness of the mass boundary layer decreases

gradually).

The curves representing Shr and Shr are similar since

Shr results from the integration of Shr along the surface

area of the plate. Nevertheless, the curves representing

Shr are smoother, because they are cumulative, and the

abrupt changes of Shr are attenuated by the sum of the

previous values. After ¯uid expansion, the values of Shr

do not change signi®cantly along r. In Fig. 13, the values

of Sh versus Re for di�erent values of Sc are plotted; the

symbols represent the experimental data and the solid

lines the numerical predictions. For each Schmidt

number, a data correlation of the form Sh � aReb has

poor signi®cance because the principle of similarity of

the ¯ow solution with respect to jet Reynolds number is

not observed. This principle is only observed at the cell

axis, in the stagnation region. In Fig. 14 Shst=Sc1=3 is

plotted versus Re1=2, with the constants determined by

applying a least-square regression to the numerical data

(symbols in the plot). The value 1/2 was expected since it

is the value predicted by laminar theory for stagnation

¯ow due to the formation of an initially laminar

boundary layer.

4.2. Mass transfer coe�cients and Schmidt number

The solution of the solute transport equation de-

pends on the jet Reynolds number and on the Peclet

number (Pe � ReSc). This last number measures the

competition between convective and di�usive mass

transport. It is well known that for almost all solid±

liquid contact systems, the values of Pe are high, the

mass di�usion being limited to a thin layer over the

soluble solid. In laminar ¯ow, the limiting case Pe!1
was solved for the ®rst time, many years ago, by Leve-

que [16], who assumed that the entire mass ®eld is

con®ned within a zone where the velocity pro®le is lin-

ear. From then on, the solution of many mass-heat

transfer problems dealing with strong convection e�ects

Fig. 12. (a) Shr along r for di�erent values of Re at Sc � 960;

(b) Shr along r for di�erent values of Re at Sc � 960.

Fig. 13. Sh versus Re for di�erent values of Sc.

Fig. 14. Shst=Sc1=3 versus Re1=2. The symbols represent numer-

ical predictions for 960 < Sc < 50 000.
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in di�erent geometries was based on the previous as-

sumption and all concluded that Sh�Nu� / Pe1=3.

In the present work, some numerical simulations

were performed to study the dependence of Shr on Sc

and the results are plotted in Fig. 15. At Re � 300 all

the Shr=Sc1=3 values obtained for a large range of

Schmidt numbers (from 960 to 50 000) lie on the same

curve, but at Re � 860 they only lie on the same curve

until the beginning of the ¯uid expansion. This be-

havior can be explained by analyzing the velocity

pro®les inside the mass boundary layer; they are linear

along the impingement and wall regions, but deviate

from linearity at the expansion region, and this devia-

tion is more pronounced for high values of jet Rey-

nolds number.

4.3. The e�ects of an insoluble starting length

The e�ect of an insoluble starting length, r0, on the

mass transfer coe�cients was numerically and experi-

mentally investigated. In Figs. 16(a) and (b) the values

of Shr and Sh are plotted for di�erent values of r0 at

Re � 860 and Sc� 960; the solid lines represent numer-

ical predictions and, in Fig. 16(b), the symbols represent

experimental data.

If the mass boundary layer starts before the ¯uid

expansion, r0 < 2:2, the values of the local mass transfer

coe�cient tend towards the same minimum value at

r � 2:2. After the axial ¯uid expansion, the concentra-

tion pro®les near the plate are similar, whatever the

values of r0, and the local mass transfer coe�cients have

the same value. The expansion acts by ``cleaning the

history'' of the mass boundary layer. If the mass

boundary layer starts after the ¯uid expansion, the val-

ues of the local mass transfer coe�cient depend on r0.

The data in Fig. 16(b) complement the previous

analysis; the average mass transfer coe�cient in the cell

does not depend on r0 if the mass boundary layer starts

before the ¯uid expansion, but if it starts after the ¯uid

expansion, the average mass transfer coe�cient in the

cell increases with r0.

4.4. Mass transfer coe�cients and cell geometry

Miranda and Campos [1] compared the radial ¯ows

in a conical cell and in a cell with parallel plates. The

¯ow patterns are similar except that, in the parallel

con®nement, both recirculation zones are more radially

extended. When the con®nement plates are short, these

zones burst through the out¯ow boundary, leading to an

in¯ow which promotes instability inside the cell. For the

dimensions of the cell in the study, nozzle-to-impinge-

ment plate distance and ratio between nozzle and im-

pingement plate diameters, the recirculation zone in the

vicinity of the impingement plate bursts at an Re around

400.

In Figs. 17(a) and (b), the values of Shr and Shr are

compared for both con®nements, at Re � 300 and

Sc� 960. The values of Shr coincide until ¯uid expan-

sion occurs in the conical cell (r� 1.7), and from there

on, the values of Shr are higher in the conical con®ne-

ment. Fig. 17(b) shows that, for the dimensions of the

plate in study, the value of Sh is about 20% higher when

the con®nement is done by a conical wall.

4.5. Mass transfer coe�cients and inlet velocity pro®le

In the introduction, it was stated that the velocity

pro®le at the cell inlet determines the ¯ow along the

Fig. 15. Shr=Sc1=3 along r at Re � 300 and at Re � 860 for

960 <Sc < 50 000.

Fig. 16. Insoluble starting length e�ect: (a) Shr along r for

di�erent r0 at Re � 860 and Sc � 960; (b) Sh versus r0 at

Re � 860 and Sc � 960.
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whole cell. According to Miranda and Campos [1], if the

velocity pro®le is uniform, instead of parabolic, the ¯uid

shifts direction further from the plate, and the ¯uid ¯ows

in a thick channel along the wall region. If the ¯ow ®eld

is substantially changed, the same must happen to the

mass distribution near the soluble surface. Fig. 18(a)

shows the Shr predictions for Re � 860 at Sc � 960, as-

suming di�erent velocity pro®les at the cell inlet: para-

bolic, uniform and a pro®le pertaining to non-fully

developed ¯ow. A normalized developing laminar pro-

®le is well represented by

vr � 0; vz � ÿ n� 2

n
�1ÿ �2r�n�; �27�

where n ranges from 2 (laminar ¯ow) to 1 (uniform

¯ow).

Analyzing the curves of Fig. 18(a), one can conclude

that: (1) at the impingement region, the Shr values are

very sensitive to the shape of the inlet velocity pro®le; (2)

along the wall region, there is a convergence of the

values obtained with the di�erent inlet velocity pro®les.

In the cumulative curve represented in Fig. 18(b), the

di�erences between the Shr values near the axis are at-

tenuated along the radius due to the increasing mass

transfer area. The deviation between Sh values for a

parabolic pro®le and for a uniform one is of the order of

10%.

4.6. Laminar±turbulent transition

Miranda and Campos [1] studied laminar-to-turbu-

lent transition employing a laser Doppler anemometer

to measure the radial velocity component and its ¯uc-

tuation in several positions along the ¯ow. They con-

cluded that the transition begins at a critical Reynolds

number around 1600.

The experimental mass transfer data con®rm this

value. Fig. 19 shows the radial velocity measured in one

point of the ¯ow and also Sh experimental data for a

large range of Re. In both representations, there is a

Fig. 19. Laminar-to-turbulent transition. Radial velocity at one

point of the ¯ow measured with an LDA system and Sh, both

represented for a large range of Re at Sc � 960.

Fig. 18. Importance of the velocity pro®le at the nozzle exit: (a)

Shr along r at Re � 860 and Sc � 960; (b) Shr along r at

Re � 860 and Sc � 960.

Fig. 17. Comparison between conical and parallel plate con-

®nements: (a) Shr along r at Re � 300 and Sc � 960; (b) Shr

along r at Re � 300 and Sc � 960.
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change in behavior at an Re around 1600, a clear indi-

cation of an alteration of the ¯ow regime.

5. Conclusions

The mass transfer rate from a circular plate into an

impinging jet ¯owing in a conical cell is strongly a�ected

by the liquid ¯ow pattern. The principle of ¯ow simi-

larity with respect to jet Reynolds number is not ob-

served, and so a generic correlation between Sherwood

and jet Reynolds numbers has poor physical meaning.

This principle is observed at the stagnation region and a

correlation Shst=Sc1=3 � 1:77Re1=2 was obtained. The

values of the exponents were expected: (1) 1/2 is the

value predicted by laminar theory for stagnation ¯ow

due to the formation of an initially laminar boundary

layer; (2) 1/3 is the value predicted when there are strong

convection e�ects and the velocity pro®le is linear inside

the thin mass boundary layer.

The velocity pro®le is not always linear inside the

mass boundary layer; at the expansion region, for high

jet Reynolds number, there is a strong axial spread of

the mass boundary layer and the velocity pro®les near

the plate are no longer linear. Therefore, a correlation

Shr / Sc1=3 has some meaning only for low jet Reynolds

numbers, Re <� 300.

An insoluble starting length, r0, does not a�ect the

average mass transfer coe�cient in the cell if r0 is less

than the radial position where the ¯uid expansion oc-

curs. However, if the soluble plate begins after the ¯uid

expansion, the average mass transfer coe�cients in-

crease with r0.

For large plates, the average mass transfer coe�cient

in a conical cell is higher than that in a cell with parallel

plates. This conclusion, together with the unstable ¯ow

observed in a cell with parallel plates, points out the

importance of the conical geometry.

The local mass transfer coe�cients in the region near

the axis of the cell are strongly a�ected by the jet velocity

pro®le at the nozzle exit. However, the average coe�-

cients in the cell (for the cell dimensions studied) do not

di�er very much whatever the shape of the inlet pro®le

(uniform or parabolic).

The mass transfer data con®rm the value of 1600 as

the critical Reynolds number for the onset of laminar-

to-turbulent ¯ow transition.
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Appendix A

The coe�cients of the discretized ¯ow equations,

presented in this appendix, are expressed for the node

(i,j) of the grid represented in Fig. 6.

The coe�cients of the discretized Poisson equation

are computed from the following expressions:

A1 � A1;1 � A1;2; A2 � djA1;1 ÿ d2
j A1;2;

A3 � ÿ�A1 � A2 � A4 � A5�;
A4 � 2

�zi; j ÿ zi;jÿ1��zi; j�1 ÿ zi; jÿ1� and A5 � eA4;

where

A1;1 � 2

�ri; j ÿ riÿ1; j��ri�1; j ÿ riÿ1; j� ;

A1;2 � ri�1; j ÿ ri; j

ri; j�ri; j ÿ riÿ1; j��ri�1; j ÿ riÿ1; j� ;

dj � ri; j ÿ riÿ1; j

ri�1; j ÿ ri; j
and e � zi; j ÿ zi; jÿ1

zi; j�1 ÿ zi; j
:

The coe�cients of the discretized vorticity transport

equation are computed from the following expressions

D1 � D1;1 � D1;2 � D1;3;

D2 � ÿd2
j D1;2 � djD1;3 � D2;1;

D3 � ÿ�D1 � D2 � D4 � D5� � 1

Rer2
i;j
ÿ vri;j

ri;j
;

D4 � D4;1 � D4;2 and D5 � C5;1 � eD4;2;

where

D1;1 �
vri;j > 0 ÿ vri; j

ri; jÿriÿ1; j

vri;j < 0 0

8<: ;

D1;2 � ri�1; j ÿ ri; j

ri; j�ri; j ÿ riÿ1; j��ri�1; j ÿ riÿ1; j�Re
;

D1;3 � ÿ 2

�ri; j ÿ riÿ1; j��ri�1; j ÿ riÿ1; j�Re
;

D2;1 �
vri; j > 0 0

vri; j < 0
vri; j

ri�1; jÿri; j

8<: ;

D4;1 �
vzi; j > 0 ÿ vzi; j

zi; jÿzi; jÿ1

vz i; j < 0 0

8<: ;

D4;2 � ÿ 2

�zi;j ÿ zi; jÿ1��zi; j�1 ÿ zi; jÿ1�Re
;

D5;1 �
vzi; j > 0 0

vzi; j < 0
vzi; j

zi; j�1ÿzi; j
:

8<:
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The coe�cients of the discretized mass transport equa-

tion are computed from the following expressions

F1 � F1;1 � F1;2 � F1;3;

F2 � ÿd2
j F1;2 � djF1;3 � F2;1;

F3 � ÿ�F1 � F2 � F4 � F5�;
F4 � F4;1 � F4;2 and F5 � F5;1 � eF4;2;

where

F1;1 � D1;1; F1;2 � Re
Pe

D1;2; F1;3 � Re
Pe

D1;3;

F2;1 � D2;1; F4;1 � D4;1; F4;2 � Re
Pe

D4;2

and F5;1 � D5;1:

The coe�cients of the boundary equations are com-

puted from the following expressions.

Boundary I

G1 � G2 � G4 � G5 � 0; G3 � 1; g � 0;

G6 � zi:j ÿ zi;jÿ1

zi;jÿ1 ÿ zi;jÿ2

; G7 � ÿ zi;j ÿ zi;jÿ2

zi;jÿ1 ÿ zi;jÿ2

:

Boundary II

B1 � B2 � 0; B3 � 1; b � 0; E1 � E2 � 0;

E3 � 1; e � 0; G1 � G2 � 0; G3 � ÿ3;

G4 � 4; G5 � ÿ1; G6 � G7 � 0 and g � 0:

Boundary III

B1 � B2 � 0; B3 � 1; b � 0; E1 � E2 � 0;

E3 � 1 e � �zi;j�2 ÿ zi;j�2vri;j�1
ÿ �zi;j�1 ÿ zi;j�2vri;j�2

�zi;j�2 ÿ zi;j�1��zi;j�2 ÿ zi;j��zi;j�1 ÿ zi;j� :

Boundary IV

B1 � 1; B2 � ÿ4; B3 � 3; b � 0;

E1 � 1; E2 � ÿ4; E3 � 3� 2Drj

ri;j
; e � 0;

with Drj � ri;j ÿ riÿ1;j � riÿ1;j ÿ riÿ2;j;

G1 � 1; G2 � ÿ4; G3 � 3;

G4 � G5 � G6 � G7 � 0 and g � 0:
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